kappa-Opioid tolerance and dependence in cultures of dopaminergic midbrain neurons.
نویسندگان
چکیده
Repeated cocaine exposure upregulates kappa opioids and their receptors in the mesocorticolimbic system; the ensuing kappa-mediated dysphoria appears to contribute to addiction and withdrawal. As a potential rehabilitation strategy to reverse cocaine-induced kappa sensitization, the present study used tritiated dopamine release assays to examine the induction of kappa-opioid tolerance in cultured mesencephalic neurons. Administration of the kappa agonist U69,593 inhibited tetrodotoxin-sensitive, spontaneous (EC(50) = 1.5 nM), and potassium-stimulated (EC(50) = 10 nM) release. These effects were blocked by pertussis toxin and by the kappa antagonist nor-binaltorphimine. The 2 d agonist exposure (1 microM) caused a shift in the U69,593 dose-response curve that was greater in the potassium-stimulated paradigm (140-fold) than in the spontaneous release assay (sixfold). These results were attributable to the attenuation of kappa-receptor signaling mechanisms and to dependence. In the stimulated release assay, attenuation of kappa signaling caused by 4 hr of U69,593 exposure recovered with a half-life of 1.1 hr, whereas attenuation after 144 hr of exposure recovered slowly (t(1/2) = 20 hr). In the spontaneous release assay, attenuation of kappa-opioid signaling occurred slowly (t(1/2) = 22 hr), and resensitization after a 144 hr exposure was rapid (t(1/2) < 1 hr). kappa-Opioid dependence was observed after 144 hr of U69,593 exposure. Thus multiple mechanisms of adaptation to kappa-opioid exposure occur in mesocorticolimbic neurons. These data support the idea that the administration of kappa opioids might facilitate drug rehabilitation.
منابع مشابه
Comparison of Rat Primary Midbrain Neurons Cultured in DMEM/F12 and Neurobasal Mediums
Introduction: Midbrain dopaminergic neurons are involved in various brain functions, including motor behavior, reinforcement, motivation, learning, and cognition. Primary dopaminergic neurons and also several lines of these cells are extensively used in cell culture studies. Primary dopaminergic neurons prepared from rodents have been cultured in both DMEM/F12 and neurobasal mediums in several ...
متن کاملFemtomolar concentrations of dynorphins protect rat mesencephalic dopaminergic neurons against inflammatory damage.
The hallmark of Parkinson's disease is the death of nigral dopaminergic neurons, and inflammation in the brain has been increasingly associated with the pathogenesis of this neurological disorder. Dynorphins are among the major opioid peptides in the striato-nigral pathway and are important in regulating dopaminergic neuronal activities. However, it is not clear whether dynorphins play a role i...
متن کاملNaloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation.
Degeneration of dopaminergicrgic neurons in the substantia nigra of the brain is a hallmark of Parkinson's disease and inflammation and oxidative stress are closely associated with the pathogenesis of degenerative neurological disorders. Treatment of rat mesencephalic mixed neuron-glia cultures with lipopolysaccharide (LPS)-activated microglia, resident immune cells of the brain, to release pro...
متن کاملCinnamaldehyde attenuates dopaminergic neuronal loss in substantia nigra and induces midbrain catalase activity in a mouse model of Parkinson’s disease
Background and Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease that affects 3% of the population. PD involves a progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and subsequent loss of dopamine. Dopamine depletion leads to movement dysfunction and is accompanied with tremor, rigid muscle...
متن کاملKappa opioid inhibition of somatodendritic dopamine inhibitory postsynaptic currents.
In the midbrain, dopamine neurons can release dopamine somatodendritically. This results in an inhibitory postsynaptic current (IPSC) within adjacent dopamine cells that occurs by the activation of inhibitory D(2) autoreceptors. Kappa, but not mu/delta, opioid receptors inhibit this IPSC. The aim of the present study was to determine the mechanism by which kappa-opioid receptors inhibit the dop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 14 شماره
صفحات -
تاریخ انتشار 1999